Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(39): e2307999120, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37729199

RESUMEN

Asbestos is the main cause of malignant mesothelioma. Previous studies have linked asbestos-induced mesothelioma to the release of HMGB1 from the nucleus to the cytoplasm, and from the cytoplasm to the extracellular space. In the cytoplasm, HMGB1 induces autophagy impairing asbestos-induced cell death. Extracellularly, HMGB1 stimulates the secretion of TNFα. Jointly, these two cytokines kick-start a chronic inflammatory process that over time promotes mesothelioma development. Whether the main source of extracellular HMGB1 were the mesothelial cells, the inflammatory cells, or both was unsolved. This information is critical to identify the targets and design preventive/therapeutic strategies to interfere with asbestos-induced mesothelioma. To address this issue, we developed the conditional mesothelial HMGB1-knockout (Hmgb1ΔpMeso) and the conditional myelomonocytic-lineage HMGB1-knockout (Hmgb1ΔMylc) mouse models. We establish here that HMGB1 is mainly produced and released by the mesothelial cells during the early phases of inflammation following asbestos exposure. The release of HMGB1 from mesothelial cells leads to atypical mesothelial hyperplasia, and in some animals, this evolves over the years into mesothelioma. We found that Hmgb1ΔpMeso, whose mesothelial cells cannot produce HMGB1, show a greatly reduced inflammatory response to asbestos, and their mesothelial cells express and secrete significantly reduced levels of TNFα. Moreover, the tissue microenvironment in areas of asbestos deposits displays an increased fraction of M1-polarized macrophages compared to M2 macrophages. Supporting the biological significance of these findings, Hmgb1ΔpMeso mice showed a delayed and reduced incidence of mesothelioma and an increased mesothelioma-specific survival. Altogether, our study provides a biological explanation for HMGB1 as a driver of asbestos-induced mesothelioma.


Asunto(s)
Amianto , Proteína HMGB1 , Mesotelioma Maligno , Mesotelioma , Animales , Ratones , Factor de Necrosis Tumoral alfa/genética , Proteína HMGB1/genética , Mesotelioma/inducido químicamente , Mesotelioma/genética , Amianto/toxicidad , Inflamación , Microambiente Tumoral
2.
Int J Mol Sci ; 24(10)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37240150

RESUMEN

Pelvic radiation disease (PRD), a frequent side effect in patients with abdominal/pelvic cancers treated with radiotherapy, remains an unmet medical need. Currently available preclinical models have limited applications for the investigation of PRD pathogenesis and possible therapeutic strategies. In order to select the most effective irradiation protocol for PRD induction in mice, we evaluated the efficacy of three different locally and fractionated X-ray exposures. Using the selected protocol (10 Gy/day × 4 days), we assessed PRD through tissue (number and length of colon crypts) and molecular (expression of genes involved in oxidative stress, cell damage, inflammation, and stem cell markers) analyses at short (3 h or 3 days after X-ray) and long (38 days after X-rays) post-irradiation times. The results show that a primary damage response in term of apoptosis, inflammation, and surrogate markers of oxidative stress was found, thus determining a consequent impairment of cell crypts differentiation and proliferation as well as a local inflammation and a bacterial translocation to mesenteric lymph nodes after several weeks post-irradiation. Changes were also found in microbiota composition, particularly in the relative abundance of dominant phyla, related families, and in alpha diversity indices, as an indication of dysbiotic conditions induced by irradiation. Fecal markers of intestinal inflammation, measured during the experimental timeline, identified lactoferrin, along with elastase, as useful non-invasive tools to monitor disease progression. Thus, our preclinical model may be useful to develop new therapeutic strategies for PRD treatment.


Asunto(s)
Traumatismos por Radiación , Ratones , Animales , Rayos X , Modelos Animales de Enfermedad , Apoptosis/efectos de la radiación , Inflamación
3.
Int J Mol Sci ; 24(10)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37240259

RESUMEN

Sonic hedgehog medulloblastoma (SHH-MB) accounts for 25-30% of all MBs, and conventional therapy results in severe long-term side effects. New targeted therapeutic approaches are urgently needed, drawing also on the fields of nanoparticles (NPs). Among these, plant viruses are very promising, and we previously demonstrated that tomato bushy stunt virus (TBSV), functionalized on the surface with CooP peptide, specifically targets MB cells. Here, we tested the hypothesis that TBSV-CooP can specifically deliver a conventional chemotherapeutic drug (i.e., doxorubicin, DOX) to MB in vivo. To this aim, a preclinical study was designed to verify, by histological and molecular methods, if multiple doses of DOX-TBSV-CooP were able to inhibit tumor progression of MB pre-neoplastic lesions, and if a single dose was able to modulate pro-apoptotic/anti-proliferative molecular signaling in full-blown MBs. Our results demonstrate that when DOX is encapsulated in TBSV-CooP, its effects on cell proliferation and cell death are similar to those obtained with a five-fold higher dose of non-encapsulated DOX, both in early and late MB stages. In conclusion, these results confirm that CooP-functionalized TBSV NPs are efficient carriers for the targeted delivery of therapeutics to brain tumors.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Nanopartículas , Tombusvirus , Ratones , Animales , Meduloblastoma/metabolismo , Preparaciones Farmacéuticas , Proteínas Hedgehog/metabolismo , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Neoplasias Cerebelosas/metabolismo , Nanopartículas/química
4.
Proc Natl Acad Sci U S A ; 120(4): e2217840120, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36656861

RESUMEN

BAP1 is a powerful tumor suppressor gene characterized by haplo insufficiency. Individuals carrying germline BAP1 mutations often develop mesothelioma, an aggressive malignancy of the serosal layers covering the lungs, pericardium, and abdominal cavity. Intriguingly, mesotheliomas developing in carriers of germline BAP1 mutations are less aggressive, and these patients have significantly improved survival. We investigated the apparent paradox of a tumor suppressor gene that, when mutated, causes less aggressive mesotheliomas. We discovered that mesothelioma biopsies with biallelic BAP1 mutations showed loss of nuclear HIF-1α staining. We demonstrated that during hypoxia, BAP1 binds, deubiquitylates, and stabilizes HIF-1α, the master regulator of the hypoxia response and tumor cell invasion. Moreover, primary cells from individuals carrying germline BAP1 mutations and primary cells in which BAP1 was silenced using siRNA had reduced HIF-1α protein levels in hypoxia. Computational modeling and co-immunoprecipitation experiments revealed that mutations of BAP1 residues I675, F678, I679, and L691 -encompassing the C-terminal domain-nuclear localization signal- to A, abolished the interaction with HIF-1α. We found that BAP1 binds to the N-terminal region of HIF-1α, where HIF-1α binds DNA and dimerizes with HIF-1ß forming the heterodimeric transactivating complex HIF. Our data identify BAP1 as a key positive regulator of HIF-1α in hypoxia. We propose that the significant reduction of HIF-1α activity in mesothelioma cells carrying biallelic BAP1 mutations, accompanied by the significant reduction of HIF-1α activity in hypoxic tissues containing germline BAP1 mutations, contributes to the reduced aggressiveness and improved survival of mesotheliomas developing in carriers of germline BAP1 mutations.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia , Mesotelioma Maligno , Mesotelioma , Ubiquitina Tiolesterasa , Humanos , Heterocigoto , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Mesotelioma/genética , Mesotelioma/metabolismo , Mesotelioma Maligno/genética , Mesotelioma Maligno/complicaciones , Mutación , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina Tiolesterasa/metabolismo
5.
Cancers (Basel) ; 14(14)2022 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-35884524

RESUMEN

Recent reports have shown a link between radiation exposure and non-cancer diseases such as radiation-induced heart disease (RIHD). Radiation exposures are often inhomogeneous, and out-of-target effects have been studied in terms of cancer risk, but very few studies have been carried out for non-cancer diseases. Here, the role of miRNAs in the pathogenesis of RIHD was investigated. C57Bl/6J female mice were whole- (WBI) or partial-body-irradiated (PBI) with 2 Gy of X-rays or sham-irradiated (SI). In PBI exposure, the lower third of the mouse body was irradiated, while the upper two-thirds were shielded. From all groups, hearts were collected 15 days or 6 months post-irradiation. The MiRNome analysis at 15 days post-irradiation showed that miRNAs, belonging to the myomiR family, were highly differentially expressed in WBI and PBI mouse hearts compared with SI hearts. Raman spectral data collected 15 days and 6 months post-irradiation showed biochemical differences among SI, WBI and PBI mouse hearts. Fibrosis in WBI and PBI mouse hearts, indicated by the increased deposition of collagen and the overexpression of genes involved in myofibroblast activation, was found 6 months post-irradiation. Using an in vitro co-culture system, involving directly irradiated skeletal muscle and unirradiated ventricular cardiac human cells, we propose the role of miR-1/133a as mediators of the abscopal response, suggesting that miRNA-based strategies could be relevant for limiting tissue-dependent reactions in non-directly irradiated tissues.

6.
Biochem Biophys Res Commun ; 610: 15-22, 2022 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-35430447

RESUMEN

The transcription factor p63, belonging to the p53 family, is considered the master regulator of epidermal differentiation, skin, and in general of the differentiation of ectodermal tissues. Mutations in TP63 gene cause several rare ectodermal dysplasia disorders that refers to epidermal structural abnormalities and ocular surface disease, such as Ectrodactyly Ectodermal Dysplasia Clefting (EEC) syndrome. In this review, we discuss the key roles of p63 in keratinocytes and corneal epithelial differentiation, highlighting the function of the ΔNp63α isoform in driving limbal stem cell and epithelial stem cells commitment. We have summarized the specific ocular phenotypes observed in the TP63-mutation derived EEC syndrome, discussing the current and novel therapeutic strategies for the management of the ocular manifestations in EEC syndrome.


Asunto(s)
Labio Leporino , Fisura del Paladar , Displasia Ectodérmica , Labio Leporino/tratamiento farmacológico , Fisura del Paladar/tratamiento farmacológico , Displasia Ectodérmica/tratamiento farmacológico , Displasia Ectodérmica/genética , Humanos , Factores de Transcripción/química , Factores de Transcripción/genética
7.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34815344

RESUMEN

Carriers of heterozygous germline BAP1 mutations (BAP1+/-) are affected by the "BAP1 cancer syndrome." Although they can develop almost any cancer type, they are unusually susceptible to asbestos carcinogenesis and mesothelioma. Here we investigate why among all carcinogens, BAP1 mutations cooperate with asbestos. Asbestos carcinogenesis and mesothelioma have been linked to a chronic inflammatory process promoted by the extracellular release of the high-mobility group box 1 protein (HMGB1). We report that BAP1+/- cells secrete increased amounts of HMGB1, and that BAP1+/- carriers have detectable serum levels of acetylated HMGB1 that further increase when they develop mesothelioma. We linked these findings to our discovery that BAP1 forms a trimeric protein complex with HMGB1 and with histone deacetylase 1 (HDAC1) that modulates HMGB1 acetylation and its release. Reduced BAP1 levels caused increased ubiquitylation and degradation of HDAC1, leading to increased acetylation of HMGB1 and its active secretion that in turn promoted mesothelial cell transformation.


Asunto(s)
Amianto , Proteína HMGB1/química , Histona Desacetilasa 1/química , Proteínas Supresoras de Tumor/química , Ubiquitina Tiolesterasa/química , Animales , Biomarcadores de Tumor/metabolismo , Carcinogénesis , Núcleo Celular/metabolismo , Femenino , Interacción Gen-Ambiente , Mutación de Línea Germinal , Proteína HMGB1/genética , Heterocigoto , Histona Desacetilasa 1/genética , Incidencia , Inflamación , Masculino , Mesotelioma/metabolismo , Ratones , Mutación , Pronóstico , Unión Proteica , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina/química , Ubiquitina Tiolesterasa/metabolismo
8.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34638864

RESUMEN

Medulloblastoma (MB) is a primary central nervous system tumor affecting mainly young children. New strategies of drug delivery are urgent to treat MB and, in particular, the SHH-dependent subtype-the most common in infants-in whom radiotherapy is precluded due to the severe neurological side effects. Plant virus nanoparticles (NPs) represent an innovative solution for this challenge. Tomato bushy stunt virus (TBSV) was functionally characterized as a carrier for drug targeted delivery to a murine model of Shh-MB. The TBSV NPs surface was genetically engineered with peptides for brain cancer cell targeting, and the modified particles were produced on a large scale using Nicotiana benthamiana plants. Tests on primary cultures of Shh-MB cells allowed us to define the most efficient peptides able to induce specific uptake of TBSV. Immunofluorescence and molecular dynamics simulations supported the hypothesis that the specific targeting of the NPs was mediated by the interaction of the peptides with their natural partners and reinforced by the presentation in association with the virus. In vitro experiments demonstrated that the delivery of Doxorubicin through the chimeric TBSV allowed reducing the dose of the chemotherapeutic agent necessary to induce a significant decrease in tumor cells viability. Moreover, the systemic administration of TBSV NPs in MB symptomatic mice, independently of sex, confirmed the ability of the virus to reach the tumor in a specific manner. A significant advantage in the recognition of the target appeared when TBSV NPs were functionalized with the CooP peptide. Overall, these results open new perspectives for the use of TBSV as a vehicle for the targeted delivery of chemotherapeutics to MB in order to reduce early and late toxicity.


Asunto(s)
Neoplasias Cerebelosas , Doxorrubicina , Sistemas de Liberación de Medicamentos , Proteínas Hedgehog/metabolismo , Meduloblastoma , Nanopartículas , Proteínas de Neoplasias/metabolismo , Tombusvirus/química , Animales , Neoplasias Cerebelosas/tratamiento farmacológico , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/metabolismo , Neoplasias Cerebelosas/patología , Doxorrubicina/química , Doxorrubicina/farmacología , Proteínas Hedgehog/genética , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/genética , Meduloblastoma/metabolismo , Meduloblastoma/patología , Ratones , Ratones Mutantes , Nanopartículas/química , Nanopartículas/uso terapéutico , Proteínas de Neoplasias/genética , Nicotiana/virología
9.
Mol Oncol ; 15(11): 2823-2840, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34245122

RESUMEN

Cancer genomes have been explored from the early 2000s through massive exome sequencing efforts, leading to the publication of The Cancer Genome Atlas in 2013. Sequencing techniques have been developed alongside this project and have allowed scientists to bypass the limitation of costs for whole-genome sequencing (WGS) of single specimens by developing more accurate and extensive cancer sequencing projects, such as deep sequencing of whole genomes and transcriptomic analysis. The Pan-Cancer Analysis of Whole Genomes recently published WGS data from more than 2600 human cancers together with almost 1200 related transcriptomes. The application of WGS on a large database allowed, for the first time in history, a global analysis of features such as molecular signatures, large structural variations and noncoding regions of the genome, as well as the evaluation of RNA alterations in the absence of underlying DNA mutations. The vast amount of data generated still needs to be thoroughly deciphered, and the advent of machine-learning approaches will be the next step towards the generation of personalized approaches for cancer medicine. The present manuscript wants to give a broad perspective on some of the biological evidence derived from the largest sequencing attempts on human cancers so far, discussing advantages and limitations of this approach and its power in the era of machine learning.


Asunto(s)
Genoma Humano , Neoplasias , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Mutación/genética , Neoplasias/genética , Secuenciación del Exoma , Secuenciación Completa del Genoma/métodos
10.
Sci Rep ; 11(1): 8118, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33854097

RESUMEN

A radiological or nuclear attack could involve such a large number of subjects as to overwhelm the emergency facilities in charge. Resources should therefore be focused on those subjects needing immediate medical attention and care. In such a scenario, for the triage management by first responders, it is necessary to count on efficient biological dosimetry tools capable of early detection of the absorbed dose. At present the validated assays for measuring the absorbed dose are dicentric chromosomes and micronuclei counts, which require more than 2-3 days to obtain results. To overcome this limitation the NATO SPS Programme funded an Italian-Egyptian collaborative project aimed at validating a fast, accurate and feasible tool for assessing the absorbed dose early after radiation exposure. Biomarkers as complete blood cell counts, DNA breaks and radio-inducible proteins were investigated on blood samples collected before and 3 h after the first fraction of radiotherapy in patients treated in specific target areas with doses/fraction of about: 2, 3.5 or > 5 Gy and compared with the reference micronuclei count. Based on univariate and multivariate multiple linear regression correlation, our results identify five early biomarkers potentially useful for detecting the extent of the absorbed dose 3 h after the exposure.


Asunto(s)
Biomarcadores/metabolismo , Radiación Ionizante , Adulto , Anciano , Anciano de 80 o más Años , Área Bajo la Curva , Biomarcadores/sangre , Recuento de Células Sanguíneas , Roturas del ADN de Doble Cadena/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Femenino , Humanos , Masculino , Persona de Mediana Edad , Curva ROC , Exposición a la Radiación , Radiometría
11.
Proc Natl Acad Sci U S A ; 117(52): 33466-33473, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33318203

RESUMEN

Rare biallelic BLM gene mutations cause Bloom syndrome. Whether BLM heterozygous germline mutations (BLM+/-) cause human cancer remains unclear. We sequenced the germline DNA of 155 mesothelioma patients (33 familial and 122 sporadic). We found 2 deleterious germline BLM+/- mutations within 2 of 33 families with multiple cases of mesothelioma, one from Turkey (c.569_570del; p.R191Kfs*4) and one from the United States (c.968A>G; p.K323R). Some of the relatives who inherited these mutations developed mesothelioma, while none with nonmutated BLM were affected. Furthermore, among 122 patients with sporadic mesothelioma treated at the US National Cancer Institute, 5 carried pathogenic germline BLM+/- mutations. Therefore, 7 of 155 apparently unrelated mesothelioma patients carried BLM+/- mutations, significantly higher (P = 6.7E-10) than the expected frequency in a general, unrelated population from the gnomAD database, and 2 of 7 carried the same missense pathogenic mutation c.968A>G (P = 0.0017 given a 0.00039 allele frequency). Experiments in primary mesothelial cells from Blm+/- mice and in primary human mesothelial cells in which we silenced BLM revealed that reduced BLM levels promote genomic instability while protecting from cell death and promoted TNF-α release. Blm+/- mice injected intraperitoneally with asbestos had higher levels of proinflammatory M1 macrophages and of TNF-α, IL-1ß, IL-3, IL-10, and IL-12 in the peritoneal lavage, findings linked to asbestos carcinogenesis. Blm+/- mice exposed to asbestos had a significantly shorter survival and higher incidence of mesothelioma compared to controls. We propose that germline BLM+/- mutations increase the susceptibility to asbestos carcinogenesis, enhancing the risk of developing mesothelioma.


Asunto(s)
Asbestosis/genética , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal/genética , Mesotelioma/genética , RecQ Helicasas/genética , Adulto , Anciano , Animales , Asbesto Crocidolita , Familia , Femenino , Inestabilidad Genómica , Heterocigoto , Humanos , Incidencia , Inflamación/patología , Masculino , Ratones , Persona de Mediana Edad
12.
Proc Natl Acad Sci U S A ; 117(41): 25543-25552, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32999071

RESUMEN

Asbestos causes malignant transformation of primary human mesothelial cells (HM), leading to mesothelioma. The mechanisms of asbestos carcinogenesis remain enigmatic, as exposure to asbestos induces HM death. However, some asbestos-exposed HM escape cell death, accumulate DNA damage, and may become transformed. We previously demonstrated that, upon asbestos exposure, HM and reactive macrophages releases the high mobility group box 1 (HMGB1) protein that becomes detectable in the tissues near asbestos deposits where HMGB1 triggers chronic inflammation. HMGB1 is also detectable in the sera of asbestos-exposed individuals and mice. Searching for additional biomarkers, we found higher levels of the autophagy marker ATG5 in sera from asbestos-exposed individuals compared to unexposed controls. As we investigated the mechanisms underlying this finding, we discovered that the release of HMGB1 upon asbestos exposure promoted autophagy, allowing a higher fraction of HM to survive asbestos exposure. HMGB1 silencing inhibited autophagy and increased asbestos-induced HM death, thereby decreasing asbestos-induced HM transformation. We demonstrate that autophagy was induced by the cytoplasmic and extracellular fractions of HMGB1 via the engagement of the RAGE receptor and Beclin 1 pathway, while nuclear HMGB1 did not participate in this process. We validated our findings in a novel unique mesothelial conditional HMGB1-knockout (HMGB1-cKO) mouse model. Compared to HMGB1 wild-type mice, mesothelial cells from HMGB1-cKO mice showed significantly reduced autophagy and increased cell death. Autophagy inhibitors chloroquine and desmethylclomipramine increased cell death and reduced asbestos-driven foci formation. In summary, HMGB1 released upon asbestos exposure induces autophagy, promoting HM survival and malignant transformation.


Asunto(s)
Amianto/efectos adversos , Autofagia/efectos de los fármacos , Transformación Celular Neoplásica/inducido químicamente , Proteína HMGB1/metabolismo , Mesotelioma/metabolismo , Adulto , Anciano , Animales , Células Cultivadas , Células Epiteliales/citología , Células Epiteliales/metabolismo , Humanos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Exposición Profesional
13.
Nat Rev Cancer ; 20(9): 533-549, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32472073

RESUMEN

Cell division and organismal development are exquisitely orchestrated and regulated processes. The dysregulation of the molecular mechanisms underlying these processes may cause cancer, a consequence of cell-intrinsic and/or cell-extrinsic events. Cellular DNA can be damaged by spontaneous hydrolysis, reactive oxygen species, aberrant cellular metabolism or other perturbations that cause DNA damage. Moreover, several environmental factors may damage the DNA, alter cellular metabolism or affect the ability of cells to interact with their microenvironment. While some environmental factors are well established as carcinogens, there remains a large knowledge gap of others owing to the difficulty in identifying them because of the typically long interval between carcinogen exposure and cancer diagnosis. DNA damage increases in cells harbouring mutations that impair their ability to correctly repair the DNA. Tumour predisposition syndromes in which cancers arise at an accelerated rate and in different organs - the equivalent of a sensitized background - provide a unique opportunity to examine how gene-environment interactions influence cancer risk when the initiating genetic defect responsible for malignancy is known. Understanding the molecular processes that are altered by specific germline mutations, environmental exposures and related mechanisms that promote cancer will allow the design of novel and effective preventive and therapeutic strategies.


Asunto(s)
Interacción Gen-Ambiente , Predisposición Genética a la Enfermedad , Neoplasias/genética , Animales , Mutación de Línea Germinal , Humanos
14.
Int J Mol Sci ; 20(22)2019 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-31744230

RESUMEN

Skin cancer is the most common type of cancer worldwide. Ozone depletion and climate changes might cause a further increase in the incidence rate in the future. Although the early detection of skin cancer enables it to be treated successfully, some tumours can evolve and become more aggressive, especially in the case of melanoma. Therefore, good diagnostic and prognostic markers are needed to ensure correct detection and treatment. Transcription factor p63, a member of the p53 family of proteins, plays an essential role in the development of stratified epithelia such as skin. In this paper, we conduct a comprehensive review of p63 expression in different types of skin cancer and discuss its possible use in the diagnosis and prognosis of cutaneous tumours.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma Basocelular/diagnóstico , Carcinoma de Células Escamosas/diagnóstico , Melanoma/diagnóstico , Neoplasias Cutáneas/diagnóstico , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Carcinoma Basocelular/metabolismo , Carcinoma de Células Escamosas/metabolismo , Humanos , Inmunohistoquímica , Melanoma/metabolismo , Pronóstico , Neoplasias Cutáneas/metabolismo
15.
Biotechnol J ; 14(3): e1800081, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29975457

RESUMEN

Hairy root (HR) cultures represent an attractive platform for the production of heterologous proteins, due to the possibility of secreting the molecule of interest in the culture medium. The main limitation is the low accumulation yields of heterologous proteins. The aim of this study is to enhance the accumulation of a tumor-targeting antibody with a human-compatible glycosylation profile in HR culture medium. To this aim, the authors produce Nicotiana benthamiana HR cultures expressing the red fluorescent protein (RFP) to easily screen for different auxins able to induce heterologous protein secretion in the medium. The hormone 2,4-dichlorophenoxyacetic acid (2,4-D) is found to induce high accumulation levels (334 mg L-1 ) of RFP in the culture medium. The same protocol is used to improve the secretion of the tumor-targeting, CD20-specific 2B8-FcΔXF recombinant antibody from glyco-engineered ΔXTFT N. benthamiana HR cultures. The addition of 2,4-D determine a 28-fold increase of the accumulation of fully functional 2B8-FcΔXF in the culture medium, at levels of ≈16 mg L-1 . Antibody N-glycosylation profiling reveal the prominent occurrence of GnGn structures and low levels of xylose- and fucose-containing counterparts. This result is the first example of the expression of an engineered anti-CD20 antibody with a scFv-Fc format at high levels in HR.


Asunto(s)
Anticuerpos Monoclonales/genética , Nicotiana/genética , Raíces de Plantas/genética , Anticuerpos de Cadena Única/genética , Antígenos CD20/genética , Fucosa/genética , Glicosilación , Humanos , Proteínas Luminiscentes/genética , Plantas Modificadas Genéticamente/genética , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/genética , Xilosa/genética , Proteína Fluorescente Roja
16.
Biotechnol Bioeng ; 115(3): 565-576, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29178403

RESUMEN

Anti-CD20 recombinant antibodies are among the most promising therapeutics for the treatment of B-cell malignancies such as non-Hodgkin lymphomas. We recently demonstrated that an immunocytokine (2B8-Fc-hIL2), obtained by fusing an anti-CD20 scFv-Fc antibody derived from C2B8 mAb (rituximab) to the human interleukin 2 (hIL-2), can be efficiently produced in Nicotiana benthamiana plants. The purified immunocytokine (IC) bearing a typical plant protein N-glycosylation profile showed a CD20 binding activity comparable to that of rituximab and was efficient in eliciting antibody-dependent cell-mediated cytotoxicity (ADCC) of human PBMC against Daudi cells, indicating its fuctional integrity. In this work, the immunocytokine devoid of the typical xylose/fucose N-glycosylation plant signature (IC-ΔXF) and the corresponding scFv-Fc-ΔXF antibody not fused to the cytokine, were obtained in a glyco-engineered ΔXylT/FucT N. benthamiana line. Purification yields from agroinfiltrated plants amounted to 20-35 mg/kg of leaf fresh weight. When assayed for interaction with FcγRI and FcγRIIIa, IC-ΔXF exhibited significantly enhanced binding affinities if compared to the counterpart bearing the typical plant protein N-glycosylation profile (IC) and to rituximab. The glyco-engineered recombinant molecules also exhibited a strongly improved ADCC and complement-dependent cytotoxicity (CDC). Notably, our results demonstrate a reduced C1q binding of xylose/fucose carrying IC and scFv-Fc compared to versions that lack these sugar moieties. These results demonstrate that specific N-glycosylation alterations in recombinant products can dramatically affect the effector functions of the immunocytokine, resulting in an overall improvement of the biological functions and consequently of the therapeutic potential.


Asunto(s)
Interleucina-2 , Leucocitos Mononucleares/metabolismo , Nicotiana , Plantas Modificadas Genéticamente , Polisacáridos , Proteínas Recombinantes de Fusión , Anticuerpos de Cadena Única , Humanos , Interleucina-2/biosíntesis , Interleucina-2/química , Interleucina-2/genética , Interleucina-2/farmacología , Leucocitos Mononucleares/citología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Polisacáridos/biosíntesis , Polisacáridos/genética , Polisacáridos/aislamiento & purificación , Polisacáridos/farmacología , Ingeniería de Proteínas , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/farmacología , Anticuerpos de Cadena Única/biosíntesis , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/aislamiento & purificación , Anticuerpos de Cadena Única/farmacología , Nicotiana/genética , Nicotiana/metabolismo
17.
Cell Death Discov ; 3: 17071, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29152378

RESUMEN

Zinc-finger proteins (ZNFs) are one of the most abundant groups of proteins and have a wide range of molecular functions. Given the wide variety of zinc-finger domains, ZNFs are able to interact with DNA, RNA, PAR (poly-ADP-ribose) and other proteins. Thus, ZNFs are involved in the regulation of several cellular processes. In fact, ZNFs are implicated in transcriptional regulation, ubiquitin-mediated protein degradation, signal transduction, actin targeting, DNA repair, cell migration, and numerous other processes. The aim of this review is to provide a comprehensive summary of the current state of knowledge of this class of proteins. Firstly, we describe the actual classification of ZNFs, their structure and functions. Secondly, we focus on the biological role of ZNFs in the development of organisms under normal physiological and pathological conditions.

18.
Biochem Biophys Res Commun ; 482(3): 440-444, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-28212728

RESUMEN

The transcription factor p63 belongs to the p53-family and is a master regulator of proliferative potential, lineage specification, and differentiation in epithelia during development and tissue homeostasis. In cancer, p63 contribution is isoform-specific, with both oncogenic and tumour suppressive roles attributed, for ΔNp63 and TAp63, respectively. Recently, p53 and TAp73, in line with other tumour suppressor genes, have emerged as important regulators of energy metabolism and metabolic reprogramming in cancer. To date, p63 contributions in controlling energy metabolism have been partially investigated; given the extensive interaction of the p53 family members, these studies have potential implications in tumour cells for metabolic reprogramming. Here, we review the role of p63 isoforms, TAp63 and ΔNp63, in controlling cell metabolism, focusing on their specific metabolic target genes and their physiological/functional context of action.


Asunto(s)
Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Antioxidantes/metabolismo , Glucosa/metabolismo , Humanos , Metabolismo de los Lípidos , Redes y Vías Metabólicas , Neoplasias/etiología , Neoplasias/metabolismo , Isoformas de Proteínas/metabolismo
19.
J Thorac Dis ; 8(3): 386-95, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27076933

RESUMEN

BACKGROUND: The key role of egfr in thymoma pathogenesis has been questioned following the failure in identifying recurrent genetic alterations of egfr coding sequences and relevant egfr amplification rate. We investigated the role of the non-coding egfr CA simple sequence repeat 1 (CA-SSR-1) in a thymoma case series. METHODS: We used sequencing and egfr-fluorescence in situ hybridization (FISH) to genotype 43 thymomas; (I) for polymorphisms and somatic loss of heterozygosity of the non-coding egfr CA-SSR-1 microsatellite and (II) for egfr gene copy number changes. RESULTS: We found two prevalent CA-SSR-1 genotypes: a homozygous 16 CA repeat and a heterozygous genotype, bearing alleles with 16 and 20 CA repeats. The average combined allele length was correlated with tumor subtype: shorter sequences were significantly associated with the more aggressive WHO thymoma subtype group including B2/B3, B3 and B3/C histotypes. Four out of 29 informative cases analysed for somatic CA-SSR-1 loss of heterozygosity showed allelic imbalance (AI), 3/4 with loss of the longer allele. By egfr-FISH analysis, 9 out of 33 cases were FISH positive. Moreover, the two integrated techniques demonstrated that 3 out of 4 CA-SSR-1-AI positive cases with short allele relative prevalence showed significantly low or high chromosome 7 "polysomy"/increased gene copy number by egfr-FISH. CONCLUSIONS: Our molecular and genetic and follow up data indicated that CA-SSR-1-allelic imbalance with short allele relative prevalence significantly correlated with EGFR 3+ immunohistochemical score, increased egfr Gene Copy Number, advanced stage and with relapsing/metastatic behaviour in thymomas.

20.
Plant Biotechnol J ; 14(1): 240-51, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25879373

RESUMEN

Anti-CD20 murine or chimeric antibodies (Abs) have been used to treat non-Hodgkin lymphomas (NHLs) and other diseases characterized by overactive or dysfunctional B cells. Anti-CD20 Abs demonstrated to be effective in inducing regression of B-cell lymphomas, although in many cases patients relapse following treatment. A promising approach to improve the outcome of mAb therapy is the use of anti-CD20 antibodies to deliver cytokines to the tumour microenvironment. In particular, IL-2-based immunocytokines have shown enhanced antitumour activity in several preclinical studies. Here, we report on the engineering of an anti-CD20-human interleukin-2 (hIL-2) immunocytokine (2B8-Fc-hIL2) based on the C2B8 mAb (Rituximab) and the resulting ectopic expression in Nicotiana benthamiana. The scFv-Fc-engineered immunocytokine is fully assembled in plants with minor degradation products as assessed by SDS-PAGE and gel filtration. Purification yields using protein-A affinity chromatography were in the range of 15-20 mg/kg of fresh leaf weight (FW). Glycopeptide analysis confirmed the presence of a highly homogeneous plant-type glycosylation. 2B8-Fc-hIL2 and the cognate 2B8-Fc antibody, devoid of hIL-2, were assayed by flow cytometry on Daudi cells revealing a CD20 binding activity comparable to that of Rituximab and were effective in eliciting antibody-dependent cell-mediated cytotoxicity of human PBMC versus Daudi cells, demonstrating their functional integrity. In 2B8-Fc-hIL2, IL-2 accessibility and biological activity were verified by flow cytometry and cell proliferation assay. To our knowledge, this is the first example of a recombinant immunocytokine based on the therapeutic Rituximab antibody scaffold, whose expression in plants may be a valuable tool for NHLs treatment.


Asunto(s)
Antígenos CD20/inmunología , Interleucina-2/biosíntesis , Nicotiana/genética , Agrobacterium/metabolismo , Secuencia de Aminoácidos , Citotoxicidad Celular Dependiente de Anticuerpos , Western Blotting , Humanos , Extractos Vegetales/metabolismo , Hojas de la Planta/metabolismo , Planticuerpos/química , Planticuerpos/aislamiento & purificación , Plantas Modificadas Genéticamente , Unión Proteica , Ingeniería de Proteínas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...